This shows you the differences between two versions of the page.
| wonky [2007-06-06 16:20] – streeetch latex nik | wonky [2024-07-12 09:33] (current) – nik | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | $\nabla \cdot \mathcal{B} = 0$ | ||
| + | ---- | ||
| + | $\frac{3}{4 \pi} \sqrt{4 \cdot x^2 12}$ | ||
| - | < | + | $$ |
| - | + | ||
| - | < | + | |
| - | \frac{3}{4 \pi} | + | |
| \lim_{n \to \infty} | \lim_{n \to \infty} | ||
| \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} | \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} | ||
| e^{i \pi} + 1 = 0 \\ | e^{i \pi} + 1 = 0 \\ | ||
| - | </ | + | $$ |
| + | |||
| + | ---- | ||
| - | < | + | $$ \begin{align*} |
| - | $ \begin{align*} | + | |
| \int x^2 dx & = \frac{1}{3}x^3 | \int x^2 dx & = \frac{1}{3}x^3 | ||
| \therefore\quad\int_0^1 x^2 dx &= \frac{1}{3} | \therefore\quad\int_0^1 x^2 dx &= \frac{1}{3} | ||
| \end{align*} | \end{align*} | ||
| - | $ </ | + | $$ |